๊ตฐ์ง‘ ์•Œ๊ณ ๋ฆฌ์ฆ˜

1. ๊ตฐ์ง‘

  • ํ•œ ํด๋Ÿฌ์Šคํ„ฐ ์•ˆ์˜ ๋ฐ์ดํ„ฐ ํฌ์ธํŠธ๋ผ๋ฆฌ๋Š” ๋งค์šฐ ๋น„์Šทํ•˜๊ณ  ๋‹ค๋ฅธ ํด๋Ÿฌ์Šคํ„ฐ์˜ ๋ฐ์ดํ„ฐ ํฌ์ธํŠธ์™€๋Š” ๊ตฌ๋ถ„๋˜๋„๋ก ๋ฐ์ดํ„ฐ๋ฅผ ๋‚˜๋ˆ„๋Š” ๊ฒƒ

โ€‹

2. ๊ณผ์ผ ์‚ฌ์ง„ ๋ถ„๋ฅ˜ํ•˜๊ธฐ

๊ณผ์ผ๋ฐ์ดํ„ฐ ์ค€๋น„ํ•˜๊ธฐ

  • ์‚ฌ๊ณผ, ๋ฐ”๋‚˜๋‚˜, ํŒŒ์ธ์• ํ”Œ์„ ๋‹ด๊ณ  ์žˆ๋Š” ํ‘๋ฐฑ์‚ฌ์ง„ 300์žฅ ๋ถ„๋ฅ˜
  • fruits๋Š” ๋„˜ํŒŒ์ด ๋ฐฐ์—ด์ด๋ฉฐ 100 * 100 ์‚ฌ์ด์ฆˆ์˜ ์ƒ˜ํ”Œ 300๊ฐœ๋ฅผ ๊ฐ–๊ณ  ์žˆ์Œ
import numpy as np
import matplotlib.pyplot as plt
fruits = np.load("fruits_300.npy")
fruits.shape
(300, 100, 100)
  • matplotlib์˜ imshow ํ•จ์ˆ˜๋ฅผ ์ด์šฉํ•˜์—ฌ ๋„˜ํŒŒ์ด ๋ฐฐ์—ด ์ด๋ฏธ์ง€๋กœ ์ €์žฅ ๊ฐ€๋Šฅ
plt.imshow(fruits[0],cmap="gray_r")
plt.show()

png โ€‹

  • subplots ํ•จ์ˆ˜๋ฅผ ์‚ฌ์šฉํ•˜๋ฉด ์—ฌ๋Ÿฌ ๊ฐœ์˜ ๊ทธ๋ž˜ํ”„๋ฅผ ๋ฐฐ์—ด์ฒ˜๋Ÿผ ์Œ“์„ ์ˆ˜ ์žˆ๋„๋ก ๋„์™€์คŒ
  • subplots(1,2) -> 1ํ–‰ 2์—ด์˜ ๊ทธ๋ž˜ํ”„ ๋ฐฐ์—ด
fig, axs = plt.subplots(1,2)
axs[0].imshow(fruits[100], cmap = "gray_r")
axs[1].imshow(fruits[200], cmap = "gray_r")
plt.show()

png โ€‹

  • 100 * 100 2์ฐจ์›๋ฐฐ์—ด์„ 1 * 10000 1์ฐจ์›๋ฐฐ์—ด๋กœ ๋งŒ๋“ฌ -> ๋ฐฐ์—ด ๊ณ„์‚ฐ ์šฉ์ด
  • ์‚ฌ๊ณผ์‚ฌ์ง„ 100๊ฐœ์ด๋ฏ€๋กœ shape์€ (100,10000) -> 10000ํ”ฝ์…€ ์ด๋ฏธ์ง€ 100๊ฐœ
  • reshape ํ•จ์ˆ˜ ์ด์šฉ์‹œ ์ฒซ๋ฒˆ์งธ ์ฐจ์› -1๋กœ ์ง€์ •ํ•˜๋ฉด ์ž๋™์œผ๋กœ ๋‚จ์€ ์ฐจ์› ํ• ๋‹น

ํ”ฝ์…€๊ฐ’ ๋ถ„์„ํ•˜๊ธฐ

apple = fruits[0:100].reshape(-1, 100*100)
apple[79][6372]
210
apple.shape
(100, 10000)
  • ํ”ฝ์…€์˜ ์ƒ˜ํ”Œ ๊ตฌํ•˜๊ธฐ
  • ์ด๋ฏธ์ง€ 100๊ฐœ์˜ ๊ฐ ํ”ฝ์…€ 10000๊ฐœ๋ฅผ ๋‹ค ํ‰๊ท  ๋‚ด๋Š” ๊ฒƒ
  • axis๋Š” ๋ฐฐ์—ด์˜ ์ถ•์„ ์˜๋ฏธ
  • 2์ฐจ์›๋ฐฐ์—ด์—์„œ axis = 1 ์ผ ๊ฒฝ์šฐ ์—ด ๋ฐฉํ–ฅ์œผ๋กœ ๊ณ„์‚ฐ , axis = 0 ์ผ ๊ฒฝ์šฐ ํ–‰ ๋ฐฉํ–ฅ์œผ๋กœ ๊ณ„์‚ฐ
print(apple.mean(axis=1))
[ 88.3346  97.9249  87.3709  98.3703  92.8705  82.6439  94.4244  95.5999
  90.681   81.6226  87.0578  95.0745  93.8416  87.017   97.5078  87.2019
  88.9827 100.9158  92.7823 100.9184 104.9854  88.674   99.5643  97.2495
  94.1179  92.1935  95.1671  93.3322 102.8967  94.6695  90.5285  89.0744
  97.7641  97.2938 100.7564  90.5236 100.2542  85.8452  96.4615  97.1492
  90.711  102.3193  87.1629  89.8751  86.7327  86.3991  95.2865  89.1709
  96.8163  91.6604  96.1065  99.6829  94.9718  87.4812  89.2596  89.5268
  93.799   97.3983  87.151   97.825  103.22    94.4239  83.6657  83.5159
 102.8453  87.0379  91.2742 100.4848  93.8388  90.8568  97.4616  97.5022
  82.446   87.1789  96.9206  90.3135  90.565   97.6538  98.0919  93.6252
  87.3867  84.7073  89.1135  86.7646  88.7301  86.643   96.7323  97.2604
  81.9424  87.1687  97.2066  83.4712  95.9781  91.8096  98.4086 100.7823
 101.556  100.7027  91.6098  88.8976]

ํŒŒ์ธ์• ํ”Œ๊ณผ ๋ฐ”๋‚˜๋‚˜๋„ ๊ฐ™์€ ๋ฐฉ์‹์œผ๋กœ ํ”ฝ์…€ ๊ตฌํ•˜๊ธฐ

pineapple = fruits[100:200].reshape(-1, 100*100)
banana = fruits[200:300].reshape(-1, 100*100)
pineapple.mean(axis=1)
array([ 99.3239,  87.1622,  97.193 ,  97.4689,  98.8892,  97.8819,
        95.1444,  92.9461,  95.8412,  96.9487,  93.2863, 101.2771,
        91.6511,  98.3901,  84.3277, 100.7017,  99.0229,  87.5298,
        99.4109,  91.8568,  90.3877,  99.5066,  95.8498,  96.0728,
       100.0062,  95.5283,  95.2715,  98.1624,  93.1395,  99.1666,
        99.9519,  96.732 ,  94.16  , 100.7644, 101.1263,  98.2852,
        98.5354, 101.3809,  95.4862,  93.1256,  87.6404,  93.7146,
        94.7279,  85.5131,  95.0937,  95.3236,  92.7696,  94.4375,
        99.36  ,  95.8924,  97.8221,  99.4014,  99.325 ,  95.025 ,
        97.5771,  97.3511,  99.4891,  97.366 , 101.0062,  91.2304,
        95.2824,  95.3544, 101.4657,  97.5239,  98.8419,  96.746 ,
        98.2922,  96.3969,  81.9464,  93.4927,  97.3872,  82.4883,
        95.3665,  95.2541, 101.3074,  97.2391,  95.4544, 100.5576,
       100.2927,  94.3088,  95.7401,  97.0982,  96.9559,  92.9114,
        97.4164, 100.769 ,  97.808 ,  99.2481, 101.0643,  94.8173,
        99.2639,  98.8539,  97.2198,  97.0201,  94.5039,  98.097 ,
        95.0201,  98.8078,  99.4634, 100.0257])
banana.mean(axis=1)
array([19.5487, 24.4884, 36.7517, 18.568 , 53.572 , 31.5789, 51.9062,
       28.4703, 23.7856, 32.1295, 29.1737, 24.5578, 27.7676, 41.3082,
       61.0437, 32.6444, 38.4187, 30.4175, 30.0639, 21.4994, 32.6018,
       39.6335, 47.8397, 57.7484, 33.6511, 23.5018, 49.6817, 44.0855,
       46.1559, 33.4963, 36.0099, 69.0751, 33.9575, 32.8786, 60.1911,
       32.9949, 45.3359, 56.1694, 36.9218, 25.6754, 32.7901, 29.0245,
       57.7134, 44.6563, 31.2138, 29.836 , 40.9228, 23.7501, 43.1543,
       32.3716, 26.0986, 55.6189, 22.2269, 29.5089, 24.0435, 22.6247,
       24.1709, 46.2714, 32.0763, 42.5076, 44.5522, 24.0199, 27.68  ,
       32.4377, 19.2198, 22.5083, 19.6742, 26.1852, 25.8368, 25.2676,
       26.4721, 34.8503, 28.5235, 80.8545, 36.9371, 47.3975, 18.7909,
       33.0428, 37.8222, 34.7819, 33.6051, 24.3963, 32.7988, 19.7609,
       32.538 , 28.5407, 23.0999, 26.3778, 27.1965, 38.7848, 18.7648,
       30.2297, 54.3816, 37.9073, 32.3126, 31.0664, 33.1657, 37.6051,
       38.1806, 26.2805])

ํžˆ์Šคํ† ๊ทธ๋žจ ๊ตฌํ•˜๊ธฐ

  • ํžˆ์Šคํ† ๊ทธ๋žจ : ๊ฐ’์ด ๋ฐœ์ƒํ•œ ๋นˆ๋„๋ฅผ ๊ทธ๋ž˜ํ”„๋กœ ํ‘œ์‹œํ•œ ๊ฒƒ
  • matplotlib์˜ histํ•จ์ˆ˜๋ฅผ ์‚ฌ์šฉํ•˜์—ฌ ๊ทธ๋ฆด ์ˆ˜ ์žˆ์Œ
  • alpha ๋งค๊ฐœ๋ณ€์ˆ˜ 1๋ณด๋‹ค ์ž‘๊ฒŒํ•˜๋ฉด ํˆฌ๋ช…๋„ ์ค„ ์ˆ˜ ์žˆ๋‹ค
  • legend ํ•จ์ˆ˜๋ฅผ ์ด์šฉํ•˜์—ฌ ์–ด๋–ค ๊ณผ์ผ์˜ ํžˆ์Šคํ† ๊ทธ๋žจ์ธ์ง€ ๋ฒ”๋ก€๋ฅผ ๋งŒ๋“ค ์ˆ˜ ์žˆ์Œ
plt.hist(np.mean(apple, axis=1),alpha=0.8)
plt.hist(np.mean(pineapple, axis=1),alpha=0.8)
plt.hist(np.mean(banana, axis=1),alpha=0.8)
plt.legend(['apple','pineapple','banana'])
plt.show()

png โ€‹

  • ์‚ฌ๊ณผ์™€ ํŒŒ์ธ์• ํ”Œ์€ ๊ตฌ๋ถ„ํ•˜๊ธฐ ํž˜๋“ค๋‹ค

ํ•ด๊ฒฐ์ฑ…

  • ์ „์ฒด ์ƒ˜ํ”Œ์— ๋Œ€ํ•ด ๊ฐ ํ”ฝ์…€์˜ ํ‰๊ท ๊ฐ’ ๊ณ„์‚ฐํ•˜๊ธฐ
  • ์„ธ ๊ณผ์ผ์€ ๋ชจ์–‘์ด ๋‹ค๋ฅด๋ฏ€๋กœ ํ”ฝ์…€๊ฐ’์ด ๋†’์€ ์œ„์น˜๊ฐ€ ์กฐ๊ธˆ ๋‹ค๋ฅผ ๋“ฏ
  • axis = 0์œผ๋กœ ํ•ด๋†“์œผ๋ฉด ๋จ
fig, axs = plt.subplots(1,3,figsize=(20,5))
axs[0].bar(range(10000),np.mean(apple, axis=0))
axs[1].bar(range(10000),np.mean(pineapple, axis=0))
axs[2].bar(range(10000),np.mean(banana, axis=0))
plt.show()

png โ€‹

๊ฐ ํ”ฝ์…€์„ ํ‰๊ท  ๋‚ธ ์ด๋ฏธ์ง€ = ๋ชจ๋“  ์‚ฌ์ง„์„ ํ•ฉ์ณ ๋†“์€ ๋Œ€ํ‘œ ์ด๋ฏธ์ง€

apple_mean = np.mean(apple, axis=0).reshape(100,100)
pineapple_mean = np.mean(pineapple, axis=0).reshape(100,100)
banana_mean = np.mean(banana, axis=0).reshape(100,100)

fig, axs = plt.subplots(1,3,figsize=(20,5))

axs[0].imshow(apple_mean, cmap="gray_r")
axs[1].imshow(pineapple_mean, cmap="gray_r")
axs[2].imshow(banana_mean, cmap="gray_r")

plt.show()

png โ€‹

ํ‰๊ท ๊ฐ’๊ณผ ๊ฐ€๊นŒ์šด ์‚ฌ์ง„ ๊ณ ๋ฅด๊ธฐ

  • abs_diff -> ์ „์ฒด ๊ณผ์ผ ๊ฐ ํ”ฝ์…€ - ์‚ฌ๊ณผ์˜ ๊ฐ ํ”ฝ์…€ ํ‰๊ท  (300,100,100)
  • abs_mean -> ๊ฐ ๊ณผ์ผ์˜ ์ „์ฒด ํ”ฝ์…€ ์˜ค์ฐจ(abs_diff[num]) ํ‰๊ท 
abs_diff = np.abs(fruits-apple_mean)
abs_mean = np.mean(abs_diff, axis=(1,2))
print(abs_mean.shape)
(300,)
  • argsort : abs_mean ๋ฐฐ์—ด์„ ์˜ค๋ฆ„์ฐจ์ˆœ์œผ๋กœ ์ •๋ ฌํ•œ ํ›„ ๊ฐ value์˜ index ๋ฐ˜ํ™˜
  • ์ด ์ค‘ ์ฒ˜์Œ 100๊ฐœ ์ถ”์ถœํ•˜์—ฌ 10 * 10 ๊ฒฉ์ž ๊ทธ๋ž˜ํ”„ ๊ทธ๋ฆฌ๊ธฐ
apple_index = np.argsort(abs_mean)[:100]
print(apple_index)
[33 48 70 57 87 12 78 59  1 74 86 38 50 92 69 27 68 30 66 24 76 98 15 84
 47 90  3 94 53 23 14 71 32  7 73 36 55 77 21 10 17 39 99 95 11 35 65  6
 61 22 56 89  2 13 80  0 97  4 58 34 40 43 75 82 54 16 31 49 93 37 63 64
 41 28 67 25 96  8 83 46 19 79 72  5 85 29 20 60 81  9 45 51 88 62 91 26
 52 18 44 42]
fig, axs = plt.subplots(10,10,figsize=(10,10))
for i in range(10):
    for j in range(10):
        axs[i,j].imshow(fruits[apple_index[i*10 + j]],cmap="gray_r")
        axs[i,j].axis('off')
plt.show()

png โ€‹

abs_diff_pa = np.abs(fruits-pineapple_mean)
abs_mean_pa = np.mean(abs_diff_pa, axis=(1,2))
pineapple_index = np.argsort(abs_mean_pa)[:120]
fig, axs = plt.subplots(12,10,figsize=(10,10))
for i in range(12):
    for j in range(10):
        axs[i,j].imshow(fruits[pineapple_index[i*10+j]],cmap="gray_r")
        axs[i,j].axis('off')
plt.show()

png โ€‹

abs_diff_b = np.abs(fruits-banana_mean)
abs_mean_b = np.mean(abs_diff_b, axis=(1,2))
banana_index = np.argsort(abs_mean_b)[:130]
fig, axs = plt.subplots(13,10,figsize=(10,10))
for i in range(13):
    for j in range(10):
        axs[i,j].imshow(fruits[banana_index[i*10+j]],cmap="gray_r")
        axs[i,j].axis('off')
plt.show()

โ€‹
png โ€‹

3. ๋น„์ง€๋„ํ•™์Šต

  • ์ •๋‹ต ๋ผ๋ฒจ์ด ์—†๋Š” ๋ฐ์ดํ„ฐ๋ฅผ ๋น„์Šทํ•œ ํŠน์ง•๋ผ๋ฆฌ ๊ตฐ์ง‘ํ™” ํ•˜์—ฌ ์ƒˆ๋กœ์šด ๋ฐ์ดํ„ฐ์— ๋Œ€ํ•œ ๊ฒฐ๊ณผ๋ฅผ ์˜ˆ์ธกํ•˜๋Š” ๋ฐฉ๋ฒ•